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Lay-out

• Introduction

• Batch sorption studies:

Sorption isotherms

• Spectroscopic investigations: 
Time-resolved Laser Fluorescence Spectroscopy

• Conclusions
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Safety barrier systems of cementitious repositories

Disposal of Low- and intermediate  
level radioactive waste

Cementitious materials are used for 
conditioning of the waste and for the 
construction of the engineered barrier 
system Waste 

solidification

Container: 
concrete, mortar, 
steel

Mortar
Mortar

Construction
concrete

Shotcrete
liner

Deep geological repository
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(Atkinson et al., 1988, Berner, 1990; Adenot & Richet, 1997)

ACW

Alkali-free

Calcium Silicate Hydrate (C-S-H) phases play an important role 
throughout the evolution of cement
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Structure of C-S-H phases

Garbev et al., 2008
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Recrystallisation of C-S-H phases from 45Ca uptake
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N2 atmosphere

C:S ratio: 0.5 – 1.60

S:L ratio:  5.0 g/L (batch sorption tests)
1.0 g/L (TRLFS measurements)

[U(VI)]added: 10-3 M – 10-7 M

Ageing time: 2 weeks

Equilibration time: 
2 weeks (batch sorption tests)
1 – 14 days (TRLFS measurements)

TRLFS / measurements

Alpha counting / ICP-OES analysis

centrifugation

UO2
2+

ageing

supernatant
sampling of

Aerosil-300 CaO

H2O
ACW

equilibration

Batch sorption experiments
Sorption tests

Experimental set-up
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Batch sorption experiments
Sorption isotherms
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Non-linear sorption: 2-site langmuir isotherm: Site 1: 1.5x10-3 mol/kg; site 2: >0.6 mol/kg

Effect of U(VI) speciation (pH) and C:S ratio (aqueous Ca concentration)
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Batch sorption experiments
Sorption isotherms
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Laboratory for Waste Management
Nuclear Energy and Safety Department

• C-S-H phases have a high recrystallisation rate providing
opportunities for incorporation (SS formation)

• U(VI) sorption on C-S-H phases:

– Is non-linear

– Depends on the U(VI) aqueous speciation (influence of pH)

– Depends on the C-S-H composition (Ca concentration?)

Batch sorption experiments
summary of the observations

Can these observations be described by a solid solution
model?



Laboratory for Waste Management
Nuclear Energy and Safety Department

Batch sorption experiments
Requirements to model solid – solutions :

Mixing model: ideal or non-ideal

Amount of recrystallized solid 

From recrystallisation experiments with 45Ca

End-members and end-member stoichiometries:

C-S-H end-members: (see e.g. presentations of D. Kulik and B. 
Lothenbach, S. Churakov,…)

U(VI) containing end-members ??

Indications from spectroscopic investigations (EXAFS, TRLFS,…)
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TimeTime--resolved laser fluorescence spectroscopy resolved laser fluorescence spectroscopy of uranylof uranyl
Fluorescence processFluorescence process

Vibrational
relaxation

Fluorescence emission

Excitation λ = 266 nm
ligand σμ (axial oxygen 2p orbital)-
to-metal δu (5f orbital) charge-
transfer

Non-radiative relaxation
e.g. via O-H stretch 

vibrations

ν=1

ν=n

ν=2
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The position (↓ ), spacing (Δ),
relative intensities (Pi/Pi+1) of the
vibronic bands, lifetime,  are sensitive
to geometry of the uranyl and local
chemical environment

O=U=O axial bond length, RUO:
RUO = 10650·[Δ]-2/3+57.5 (Bartlett &

Cooney, 1989)

Uranyl compounds fluoresce above
470 nm with characteristic vibronic
progressions originating mainly from
the symmetric stretch vibration of the 
O=U=O moiety (minor contributions
from assymetric stretch- and bending 
vibration)

460 480 500 520 540 560 580 600

Time-resolved laser fluorescence spectroscopy
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Time-resolved laser fluorescence spectroscopy
Comparison of spectra from sorbed and aqueous uranyl species

Increasing red shift (lower energy): 
Indication of weakening of the axial 
U=O bond, (lower stretch
frequency )

Stronger interaction between U(VI) 
and the equatorial ligands

Change in geometry of uranyl 
moiety

λex=266 nm, T=150 K
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Time-resolved laser fluorescence spectroscopy
Sorption isotherm
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S:L = 1.0 g L-1; equilibration time = 1 day

U(VI) sorbed on CSH at pH 12.0; C:S = 1.07

λex=266 nm, T= 150 K

U(VI) loading
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Time-resolved laser fluorescence spectroscopy
Comparison with spectra of reference compounds
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Time-resolved laser fluorescence spectroscopy
Comparison with spectra of reference compounds

Axial U – O distance (Å)

XRD EXAFS TRLFS

Soddyite
K-boltwoodite
Uranophane α
Uranophane β
C-S-H (alkali-free)
C-S-H (ACW)

1.78 (Demartin et al. 1983)
1.80 (Burns et al. 1998)
1.80 (Ginderow, et al. 1988)

1.82 (Viswanathan et al. 1986)

1.77(2)
1.80(2)

1.83(2)
1.81(2)

1.80(5)
-

1.86(5)
1.84(5)
1.9(1)
1.9(1)

TRLFS: RUO = 10650·[Δ]-2/3+57.5 (Bartlett & Cooney, 1989)
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Summary
C-S-H phases have a high recrystallisation rate

U(VI) sorption onto C-S-H phases is non-linear (at least 2 sorbed species)

- increases with increasing C:S ratio

- decreases with increasing pH

TRLFS can give indications about possible U(VI) containing end-members:

- Luminescence spectra of U(VI) sorbed on C-S-H phases are all similar
similar geometry of the uranyl moiety (1 sorbed species)
In contrast to information from batch sorption experiments

- Geometry of the sorbed uranyl is similar to the uranyl geometry in 
α-uranophane (derived from spectral shape and peak position)

- Uncertainies on axial oxygen distances is still high
(Future experiments at 4 K may improve the quality of this kind of
information)
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