

Uranium(VI) Uptake by Synthetic Calcium Silicate Hydrates

Jan Tits⁽¹⁾, N. Macé⁽¹⁾, M. Eilzer⁽²⁾, E. Wieland⁽¹⁾, G. Geipel⁽²⁾

Paul Scherrer Institut⁽¹⁾ Forschungszentrum Dresden - Rossendorf⁽²⁾

2nd International Workshop MECHANISMS AND MODELLING OF WASTE/CEMENT INTERACTIONS Le Croisic, October 12-16, 2008

- Introduction
- Batch sorption studies: Sorption isotherms
- Spectroscopic investigations: Time-resolved Laser Fluorescence Spectroscopy
- Conclusions

Safety barrier systems of cementitious repositories

Disposal of Low- and intermediate level radioactive waste

Cementitious materials are used for conditioning of the waste and for the construction of the engineered barrier system

solidification

Waste

Container: concrete, mortar, steel

C-S-H phases in cement

Calcium Silicate Hydrate (C-S-H) phases play an important role throughout the evolution of cement

Laboratory for Waste Management Nuclear Energy and Safety Department

Structure of C-S-H phases

Ca ● O ● OH ● H₂O

Garbev et al., 2008

Recrystallisation of C-S-H phases from ⁴⁵Ca uptake

Batch sorption experiments Sorption tests

Experimental set-up

Batch sorption experiments Sorption isotherms

Non-linear sorption: 2-site langmuir isotherm: Site 1: 1.5x10⁻³ mol/kg; site 2: >0.6 mol/kg

Effect of U(VI) speciation (pH) and C:S ratio (aqueous Ca concentration)

Batch sorption experiments Sorption isotherms

 10^{1} 10^{-1} Cation equilibrium concentration(M) Ca; C:S=1.65 Ca; C:S=1.07 \oplus Ca; C:S = 1.07Si; C:S=1.07 Si; C:S=1.65 10^{0} ₽ Cation concentration (M) Si; C:S = 1.07Ca; C:S=0.65 Ca; C:S = 0.75 10^{-1} 10^{-2} Si: C:S=0.65 Si; C:S = 0.7510⁻² Ο ·10⁻³ 10^{-3} 10-4 10^{-4} 10^{-5} Ā Alkali-free conditions in ACW 10^{-6} 10^{-5} 10^{-8} 10^{-7} 10^{-6} 10^{-10} 10^{-11} 10^{-9} 10^{-5} 10-9 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} UO_{2}^{2+} equilibrium concentration (M) UO_{2}^{2+} equilibrium concentration (M)

Solution composition is independent of the U(VI) sorption

Batch sorption experiments summary of the observations

- C-S-H phases have a high recrystallisation rate providing opportunities for incorporation (SS formation)
- U(VI) sorption on C-S-H phases:
 - Is non-linear
 - Depends on the U(VI) aqueous speciation (influence of pH)
 - Depends on the C-S-H composition (Ca concentration?)

Can these observations be described by a solid solution model?

Batch sorption experiments

Requirements to model solid – solutions :

- Mixing model: ideal or non-ideal
- Amount of recrystallized solid
 - From recrystallisation experiments with ⁴⁵Ca
- End-members and end-member stoichiometries:
 - C-S-H end-members: (see e.g. presentations of D. Kulik and B. Lothenbach, S. Churakov,...)
 - U(VI) containing end-members ??

Indications from spectroscopic investigations (EXAFS, <u>TRLFS</u>,...)

Time-resolved laser fluorescence spectroscopy of uranyl Fluorescence process

Time-resolved laser fluorescence spectroscopy

Uranyl compounds fluoresce above 470 nm with characteristic vibronic progressions originating mainly from the symmetric stretch vibration of the O=U=O moiety (minor contributions from assymetric stretch- and bending vibration)

≻ The position (\downarrow), spacing (Δ),

relative intensities (P_i/P_{i+1}) of the vibronic bands, lifetime, are sensitive to geometry of the uranyl and local chemical environment

>O=U=O axial bond length, R_{UO} : $R_{UO} = 10650 \cdot [\Delta]^{-2/3} + 57.5$ (Bartlett & Cooney, 1989)

Time-resolved laser fluorescence spectroscopy Comparison of spectra from sorbed and aqueous uranyl species

Increasing red shift (lower energy): Indication of weakening of the axial U=O bond, (lower stretch frequency)

Stronger interaction between U(VI) and the equatorial ligands

Change in geometry of uranyl

molety

Time-resolved laser fluorescence spectroscopy Sorption isotherm

Time-resolved laser fluorescence spectroscopy Comparison with spectra of reference compounds

Uranophane α and β

 $\lambda_{ex}{=}266$ nm, T=293 K or 150 K

Time-resolved laser fluorescence spectroscopy Comparison with spectra of reference compounds

Axial U – O distance (Å) XRD EXAFS TRLFS Soddyite 1.78 (Demartin et al. 1983) 1.80(5) 1.77(2)K-boltwoodite 1.80 (Burns et al. 1998) 1.80(2)Uranophane α 1.80 (Ginderow, et al. 1988) 1.86(5)Uranophane β 1.84(5)1.82 (Viswanathan et al. 1986) C-S-H (alkali-free) 1.83(2)1.9(1)C-S-H (ACW) 1.81(2)1.9(1)

TRLFS: $R_{UO} = 10650 \cdot [\Delta]^{-2/3} + 57.5$ (Bartlett & Cooney, 1989)

Summary

- C-S-H phases have a high recrystallisation rate
- U(VI) sorption onto C-S-H phases is non-linear (at least 2 sorbed species)
 - increases with increasing C:S ratio
 - decreases with increasing pH

> TRLFS can give indications about possible U(VI) containing end-members:

- Luminescence spectra of U(VI) sorbed on C-S-H phases are all similar
 - → similar geometry of the uranyl moiety (1 sorbed species)
 In contrast to information from batch sorption experiments
- Geometry of the sorbed uranyl is similar to the uranyl geometry in α -uranophane (derived from spectral shape and peak position)
- Uncertainies on axial oxygen distances is still high (Future experiments at 4 K may improve the quality of this kind of information)

Acknowledgements

Partial financial support was provided by the Swiss National Cooperative for the Disposal of Radioactive Waste (Nagra) and by the European Communities (Actinet and MISUC)

Thank you for your attention